R Y

CONCURRENT FILE OPERATIONS IN A HIGH

Contract Nos. NAS1-18605 and NAS1-19480

Institute for Computer Applications in Science and Engineering

Operated by the Universities Space Research Association

NNASN\ \w"":,.m,..:\

NASA Contractor Report 189711
ICASE Report No. 92-46
PERFORMANCE FORTRAN
Peter Brezany
Michael Gerndt
Piyush Mehrotra
Hans Zima
September 1992
& NASA Langley Research Center
(%- Hampton, Virginia 236655225
<
=
—=
00 =
NE
N § Nalional Aeronautics and
N = Space Administration
e Langley Research Center
5 Hamplon, Virginia 23665-5225
5_.

-
-

Concurrent File Operations in a High Performance
FORTRAN*

Peter Brezany®, Michael Gerndf. Piyush Mehrotra®. Hans Zima®

“Department of Statistics and Computer Science,
University of Vienna, Bruennerstrasse 72, A-1210 Vienna. Austria
Zimapar.univie.ac.at
“Central Institute for Applied Mathematics,

Rescarch Centre Jilich (KFA) Postfach 1913, D-5170 Jiilich. Germany
m.gerndt akfa-juelich.de
‘TCASE. MS 132C. NASA Langley Research Center.
Hampton VA 23681 USA

pu1ticase.edu

Abstract

Distributed memory multiprocessor systems can provide the computing power
necessary for large-scale scientific applications. A critical performance issue for a
number of these applications is the eflicient transfer of data to secondary storage.
Recently several research groups have proposed FORTRAN language extensions
for exploiting the data parallelism of such scientific codes on distributed mem-
ory architectures, However, few of these high performance FORTRANs provide
appropriate constructs for controlling the use of the parallel 1/0Q capabilities of
modern multiprocessing machines. In this paper. we propose constructs to specify
1/0 operations for distributed data structures in the context of Vienna Fortran.
These operations can be used by the programmer to provide information which can
help the compiler and runtime environment make the most efficient use of the 170

subsvstem.

*Tire work described in this paper is being carried out as part of the P2702 ESPRIT research project
“An Automatie Parallelization System for Genesis” funded by the Austrian Ministry for Science and
Rescarch (BMWUE). The research was also supported by the National Aeronauties and Space Adminis-
tration under NASA contracts NASL-IR605 and NASL- 19480 while some of the authors were in residence
at TCASE. Mail Stop 1320 NASA Langley Research Center. Hampton. VA 23681

1 Introduction

Distributed memory multiprocessors (DMMPs), such as Intel’s Paragon and Thinking
Machines™ ('M5, provide an attractive approach to high speed computing particularly
because their performance can be easily scaled up by inecreasing the number of proces-
sors. The 1/0 bottleneck has been somewhat alleviated in these systems by powerful
Concurrent Input/Output Systems (C1OSs) ([1. 2. 3.9, 16]).

Hardware and software architectures of ClOSs provided by various DMMP vendors
differ substantially. For example, the Concurrent File System??* (CFS) developed by
lutel for the iPSC'/2 and iPSC/860 supercomputers {15] is based on an architecture
which is straightforward to use while delivering high speed concnrrent access to large
data sets. The ('FS is based on a technique called striping. The striping scheme allows
a single file to be spread across multiple disks (striped) [3] so as to improve access speed
and decrease congestion in communication links. Striping is done at the logical hlock
level. For example the even numbered logical blocks of a file may be allocated to disk 0
while the odd numbered logical blocks are located on disk 1.

Despite significant advances in hardware. programming DMMPs has been found to
be relatively difficult. Data and work have to be distributed among the processors and
explicit message passing has to be used to access remote data.

In recent vears, several languages extensions have been proposed to provide a high
level environment for porting data parallel scientific codes to DMMPs. The fundamen-
tal goal with these approaches is to allow the user to specify the code using a global
index space while providing annotations for specifving the distribution of data. The
compiler then analyses such high level code and restructures the code into an SPMD
(Single Program Multiple Data) program for execution on the target distributed mem-
ory multiprocessor. Work distribution is based on the owner-computes rile and non-local
references are satisfied by inserting appropriate message passing statements in the gen-
erated code [7, 11, 19].

Most of these efforts are extensions of FORTRAN 77 [5. 6. 12, 14, 18, 20] or FOR-
TRAN 90 [1. 13] and we collectively refer to them as as high performance FORTRANs.

Recently. a coalition of groups from industry. government labs and academia formed the -

High Performance FORTRAN Forum to design a standard set of extensions to FOR-
TRAN 90 along the lines described above [8].

Among these languages. only Vienna Fortran [20] and MPP [14] provide support for
('10Ss. However, efficient use of the C'10Ss is erucial for many applications, such as pro-
cessing of seismic data and simulations of oil fields, and largely dictates the performance

Avall and/or
Dist Speelal

/|
DTic ¢ LI T

el

V 5
0
O

B S ——

Codes

of the whole program.

Consider the situation where one program writes out an array and another program
then reads the data into a target arrav. If we use the standard FORTRAN write statement
to output the array to a sequential access file (most scientific codes use sequential access
files only), the data elements are written out in the column-major order as defined by
FORTRAN. When the source array is distributed across a set of processors, the processors
need to synchronize and generally execute serially in order to preserve this sequence when
writing cut the elements of the array to secondary storage.

However. if the target array is distributed in the same manner as the source, both the
outpnt and the input may bhecome more efficient if we do not maintain this preseribed
sequential order. For example. each processor may - in parallel - write out the piece of
the array that 1t owns. as a contiguous block. This data can then be subsequently read
- also in parallel - into a similarly distributed target array.

If the distributed arrays are being written and read in the same program, for example
as scratch arrays. then the compiler knows the distribution of the target array. In such
a situation, it can choose the best possible order of elements on external storage so
as to make both the input and output efficient. However, in general, files are used
to communicate data between programs. In such situations. the compiler and runtime
svstem do not have any information about the distribution of the target array and hence
will have to use the standard order for the elements.

In this paper. we propose constructs which enable the user to provide some informa-
tion about how the data to be stored i the files is going to be subsequently used. This
information allows the compiler to parallelize read and write operations for distributed
arrays by selecting a well suited data sequence i the files. Note that the language
constructs described here operate on whole arrays rather than sections of arrays.

We present the concurrent 1/0 operations in the context of Vienna Fortran, a high
performance FORTRAN language. Section 2 introduces some Vienna Fortran language
constructs for specifving data distribution along with a formal model to describe these
distributions. The next section presents the concurrent [/0O operations being proposed
here, while Section 1 provides some performance numbers to justify the need for these

operations.

2 The Vienna Fortran Distribution Model

In this section we present the basic langnage features of Vienna Fortran. A full description

of the entire language can be found in [20]. Vienna Fortran is based on a machine model

g

M consisting of a set P of processors with local memory, interconnected by some network,
and a high performance file system. A Vienna Fortran program Q is executed on M by
running the code produced by the Vienna Fortran Compiler on each processor of M.
This is called an SPMD (Single-Program-Multiple-Data) model [10].

Code generation is guided by a mapping of the internal data space of Q to the
processors. The internal data space A is the set of declared arrays of @ (scalar variables

can be interpreted as one-dimensional arrays with one element).

Definition 1 Let A € A denote an arbitrary array. The index domain of A is denoted
byI*. The shape of the index domain I, shape(I), provides the ertents in cach dimension
of the domain.

2.1 Processors

In Vienna Fortran processors are explicitly introduced by the declaration of a processor
array. The notational conventions introduced for arrays above can also be used for

processor arrays, i.e., If denotes the index domain of a processor array R.

2.2 Distributions

A distribution of an array maps cach array element to one or more processors which
become the owners of the element, and, in this capacity. store the element in their local

memory. We model distributions by functions between the associated index domains.

Definition 2 Distributions
Let A € A, and assume that R is a processor array. A distribution of the array A
with respect to R is defined by the the mapping:

p I > P(IR) - ¢
where P(IR) denotes the power set of IK.

In Vieuna Fortran the distribution of an array is specified by annotating the array

declaration with a distribution expression. For example,
REAL A4:(..), A.(..) DIST dexr TO procs

declares arrays A,,1 <1 < r. The distribution expression der defines the distribution of
the arrays in the context of the given processor set procs. The distribution expression

in its simplest form consists of a sequence of distribntions, one for each dimension of the

data array. A set of intrinsic distribution functions are provided, including the commonly
oceurring block distribution which maps contignous elements to a processor and the cyvelie
distribution which maps elements cyvelically to the processor set.

Examples of arrays with some basic distributions are given below:

PROCESSORS R2D(16.16)
REAL A(256.1096) DIST (BLOCK. BLOCK) TO R2D
REAL B(256.10v6.16) DIST (CYCLIC. BLOCK.:) TO R2D

The first statement declares an 16 x 16 two-dimensional processor array. B20. The
array A s declared to be distributed such that its first dimension is partitioned into
blocks of size 16, while the second dimension is partitioned into blocks of size 236, These
blocks are mapped to the corresponding processors of B2D: for example. the segment
A9 6103841 0 1096) 1s assigned to the processor R20(4.16).

The =" in the distribution expression of B specifies that this dimension is not dis-
tributed. only the first two dimensions are distributed across the two dimensions of the
PrOCEessOr array.

Vieuna Fortran supports a wide range of facilities for distributing and aligning data
arravs. Fall details of these and other features of the langnage. including examples. can

bhe fonnd in [—) 2()].

3 Concurrent Input/Output Operations

In this section. we describe the concurrent file operations provided in Vienna Fortran.
The langnage distinguishes between two types of files: standard files and array files.
Standard files are accessed via standard FORTRAN 1/0 statements whereas array files
can be accessed via concurrent 1/0 operations only.

The first subsection deseribes the structure of the array files. The concurrent file
operations are informally introduced in the next subsection while the last subsection

specifies these operations formally.

3.1 Array Files

Input/Ontput statements control the data flow between program variables and the file
system. The file svstem of machine M may reside physically on a host system and/or a

C'1ON.

Definition 3 The file system F of machine M is defined by the union of a sct of standard
FORTRAN files For and a set of array files Fapn.

When transferring elements of a distributed array to an array file, each processor does
input/output operations controlling the transfer of the local part of the array to or from
the corresponding part of the file. A suitable file structuring is necessary to achieve high
transfer efficiency.

Array files in Vienna Fortran may contain values from more than one array. There-
fore. array files are structured into records. Each record contains an array distribution

descriptor followed by a sequence of data elements associated with this array.

Definition 4 An array file F' € Fapp is a sequence of distributed array records
< darecy.darecy, ... > Each record can be associated with a distributed array. A. and
has the form (v OM). where

o v is a distribution de seriptor and has the structure (IA, 7. (5,3) Here. 6,3 is the
distribution used for writing out the sequence of data elements and I' and T arc
the underlying array and processor indcr domains, respectively, used for defining

this distribution.

o O4 is a scquence of data clements stored in this record.

3.2 I/0O Operations

Concurrent 1/0O operations supported by Vienna Fortran can be classified into three
groups: data transfer, inquiry and file manipulation operations. These operations deal
with whole arrays which are distributed across a set of processors. Thus. a global syn-
chromzation of the processors is required before they cooperate to execnte the operation.

In this subsection. we informally describe the concurrent 1/0 operations supported

by Vienna Fortran.

Writing to a File

The concurrent write statement. CWRITE. can be used to write mnltiple arravs to a file
in a single statement. For each array a distributed array record is written onto the file.
Vienna Fortran provides three forms of the concurrent write statement. These affect the
order of data elements written ont to the distributed array record.

(1) In the simplest form, the individual distributions of the arrays determine the

sequence of array elements written out to the file. For example. in the following statement:

CWRITE (f) A;. A,. ... A,

-

where f denotes the 1/0 unit number and A,
I < ¢ < r are array identifiers. This form should be used when the data is going to
be read into arrays with the “same” distribution as A;. in this situation, the sequence
of elements in the file are generated by concatenating the linearized local segments of
A owned by the individual processors according to the mcreasing order of the linearized
index of the processors. This is the most efficient form of writing out a distributed array
since each processor can independently (and in parallel) write out the piece of the array
that it owns. thus utilizing the /O capacity of the architecture to its fullest.

(i1) Consider the situation in which the data is to be read several times into an array
B. where the distribution of B is different from that of the array being written out.
In this case. the user may wish to optimize the sequence of data elements in the file
according to the distribution of the array B so as to make the multiple read operations
more efficient. Additional parameters of the CWRITE statement enable the user to
specify (a) the shape of the distributed array to which the read operation will be applied.
and (b) its distribution. These additional specifications can then be used by the compiler
to determine the sequence of elements in the output file.

If a shape is specified. the size of the arrays A;..... A, has to be equal to the product
of the extents of the specified index domain. The resulting rank and shape have to match
the distribution specification. For example. the following statement can be used if 4 is

a two dimensional array.

CWRITE (f. PROCESSORS="R2D(N.N)".
L DIST="(BLOCK.CYCLIC) TO R2D") A

Here. the elements of the array A are written so as to optimize reading them into
an array which is distributed as (BLOCK, CYCLIC). Depending on the sequence to be
written, the processors (a) could synchronize so as to execute the correct sequence of the
individual writes to secondary storage. or (b) could incur the overhead of redistributing
the data internally before using a parallel write operation to output the data.

(i11) If the data in a file is to be subsequently read into arrays with different distribu-
tions or there is no information available about the distribution of the target arrays. the
user may allow the compiler to choose the sequence of the elements to be written out.

This is done by specifving 'SYSTEM' as the distribution in the CWRITE statement:
CWRITE ({. DIST="SYSTEM") A,.... A,

This allows the compiler and the runtime system to cooperate to determine the best
possible sequence for writing ont the data. given that there is no knowledge about dis-

tribution of the target arrays.

6

Reading from a File

A read operation to one or more distributed arrays is specified by a statement of the

following form:
CREAD (f) By, B;. ..., B,

where again f denotes the 1/0 unit number and B;, 1 <7 < r are array identifiers. The
operation reads the next r distributed array records in f. The data elements of the ith
record are read into B;. Note that the semantics of standard FORTRAN 1/0 operations
has to be maintained. That is, if an array A is written out to a file and then read iuto
another array B. the column-major linearization of FORTRAN arravs will determine
which element of A is read into a given element of B. The actual transfer of data. thus.
is done by taking into account the distribution descriptor of the ith record and the shape

and the distribution of B;.

Accessing a Distribution Descriptor

The distribution descriptor of the current distributed array record in the file can be

accessed as follows:
CDISTR (f)

The value returned by this function can be used in the special Vienna Fortran case
statement, DCASE, which allows decisions to be made based on the value of the distri-

bution descriptors.

Other Operations

e COPEN (colist) - Open an array file.

CCLOSE (cclist) - Close an array file*,

CSKIP (f.*) - Skip to the end of file.

CSKIP (f.n) - Skip n distributed array records.

CBACKARRAY (f) - Move back to the previous array record.

¢ CREWIND (f) - Rewind the file.

*The operations COPEN and CCLOSE have the same meaning and the lists colist and cclist have
the same form as their counterparts in FORTRAN 77.

-1

e CEOF (f) - Check for end of file.

Note that the concurrent 1/0 operations supported by Vienna Fortran can be applied
only to the special array files defined here, and conversely array files can only be accessed
through these operations.

3.3 Operations on Array Files

In this subsection, we formally describe the semantics of the concurrent operations on

array files.

Definition 5 1. A file Fcan be viewed as a concatenation of two scquences!

where F i part of the file which has already been processed and F is the rest of the
file. These components are not directly accessible to the programmmer. cat is the

operation of sequence concatenation.
2. The null sequence is denoted by the symbol <>,

Ao Af n—tuple = (itemyitemy, ... item,,),

then n—tuple |1 is the tth item of n — tuple.

1.1 F = <reeyoreeyrecy....recy, > for 0 < n < m, then
forst(F) = rec
rest(F) = < TE€Cy,TEC, >
last(F) = 7rcey,
withoutlast(F) = K PEC) . TEC, 1 >
[irstn(Fon) = < recy,rec, >
without firstn(F.n) = < recyggq.....rec, >
5. B & O means the transfer of the file data clements denoted by O* to the dis-

tributed array B.

BY has the following interpretation: OA is read from

B

6. B reorder : &= (O .y
the file, then it is reordered into an intermediate sequence which matches ¥*°, and

finally. this sequence is transferred to the distributed array B of the program.

U'Fhe formal specification of the array file operations presented in this subsection, is partly based on
the file model proposed by Tennent [17].

8

7. Let A = (I TR §4,) and 2 = (18,172 65)). An equivalence relation, =, is
defined among distribution descriptors. We say, v = B, iff shape (I*) = shape
(IB), shape (I*') = shape (IF?) and the two distributions 64, and 88, arc cquivalent.

X. 1f/o-operation(F) Ay, Ay, ..., A, is equivalent to:

1/o — operation(F) A,
i/o— operation(F) A,

1/o— operation(F) A,
Definition 6 Array file operations arve definid as follows*:
I. Data transfer operations

e CWRITE (F) A s cquivalent to:

= F cat < (vt 04)>
<>

P
T

e CWRITE(F, SHAPE = '(Ey,....E,). PROCESSORS="R(N,....N,.)"
DIST="der’) A

is equivalent to:

F = [: cat < (v, O04) >
F = <>

where
e = (IVEW IR der)
IVEW = [1:F)] x ... x[l:E)

¢ CWRITE (F. DIST='SYSTEM) A

is equivalent to:

= F cat < (L/’system’ C)A)>

= <>

Tl

where 93" s implementation defined.

e CREAD (F) B is equivalent to:

Y Auxiliary operations, such as opening and closing files, are not included in the formal definition here.

9

if (4 = »B) then
B i« first(F) | 2

else
B reorder ;<= (first(F) | 2,94, pB)
endif
F = F cat first(ﬁ\
F = 1'e.9t(F)

where P4 = (first(ﬁ) I
2. Inquiry operations
e CDISTR (F) is equivalent to:
first(F) | 1

e CLOF (F) is equivalent to:

]!

= <>
3. File manipulation operations
e CREWIND (F) is equivalen! to:

= F cat E
= <>

™1l

e CBACKARRAY (F) is equivalent to:

F = last(F) cat F
F o= withoutlast(,«:)
e CSKIP (F,) s equivaleat to:
F = F cat F
F = <>

e CSKIP (F, n) is equivalent to:

= F cat fz'rstn(ﬁ,n)
= withoutfirstn(ﬁ,n)

it

10

o)

4 Performance

In this section, we present some performance measurements to justify the need for user
control over the manner in which data from distributed arrays is transferred to and from
secondary storage.

Consider the following declarations:

PARAMETER (NP =...)
PARAMETER (N =...)

PROCESSORS P(NP, NP)
REAL A(N, N) DIST (BLOCK, BLOCK)

Here, A, 1s a N x N array, block distributed in both dimensions across an NP x NP
processor array. Figure 1 shows the distribution of elements of the array A for the case
of V=4 and VP = 2.

A(LD) A(L2) | A(1.3) A(1,9)
P(1,1) P(1,2)
A(2,1) A(2,2) | A(2,3) A(24)

A(3,1) A(3.2) | A(3.3) A(3.4)
P(2.1) P(2,2)
A(4.1) A(4.2) | A(4.3) A(4.9)

Figure 1: A two-dimensional block distributed array

If such an array is written out using a standard FORTRAN write statement, the se-
mantics enforce the column-major linearization of the data elements. This would require
close synchronization of the processors owning A to execute the write statement. Besides
this serialization, another drawback is that each processors writes only small blocks of
the individual columns. On most systems, such as the 1PSC/860, the best performance
for 1/0O operations is reached for large blocks. The same inefficiencies recur, if the data
has to be subsequently read into a similarly block distributed two-dimensional array.

On the other hand, if we use the simplest form of the CWRITE statement as proposed

in the last section, the sequence of ihe data elements in the file would be as follows:

11

ACLTLA D AL2)A22)AGADAG2)AM2).A(LS). A23).A(14).

Each process can thus write its local elements as one block, in parallel with the
other processes. Similarly, reading the data into a similarly distributed array can also be
executed in parallel.

In order to determine the overheads involved in writing out an array distributed
as described above, we implemented five versions of the write statement on the Intel
IPSC/860. The system consists of 32 processing nodes and 1 1/0 nodes using CFS to
manage the fle system.

The first four versions of our experiment. preserve the standard FORTRAN hineariza-
tion order. while the last uses the sequence suggested above.

In the first implementation. CENT. each process sends its local block of elements to
a designated process which colleets the endre array. This central process then writes the
array out to the CFS using a standard FORTRAN write statement.

The next three implementations, SEQO. SEQ1 and SEQ2 again preserve the column-
major lincarization of the array and use CFS’s file modes 0. 1 and 2 respectively [9]. to
write ont the array. In SEQO. cach process manages its own file pointer. All processes
write nnsynchronized to the same file. They position their file pointer to the appropriate
position in the file for cach subeolumn that they have to output,

The processes work with a common file pointer in version SEQ/ and thus have to be
closely syachronized. For cach part of a column, the appropriate process performs the
write while the other processes are waiting.

In SEQ2. the write operations are executed as collective operations. The colnmns
are written sequentially, Thus. cach process which owns a part of the column writes its
part. Other processes perform the write with zero length information. The information
written in such a collective operation is ordered in the ontpnt file according to the process
niibers.

The last version. VEW. uses the implementation suggested in this paper. That s,
instead of writing out the data in the column-major order. each process writes out its
local piece as contignous block. The processes perform a single collective write using the
C'FS’s file mode 3.

Table 1 shows the times measured for a 1000 x 1000 array distributed blockwise
across a -} x 1 processor array. Since the performance depends heavily on whether the
file to be written exists prior to the operation or not, we present timings for both cases.

The probleinis that if the file does not already exist, new disk blocks have to be allocated

._.
o

Inclnding | Pre-existingoe
Version | tile creation file
CENT 1.3 1.0
SEQO 52.2 6.5
SEQI 43.9 7.9
SEQ2 123 14
NEW 1.9 1.6 J

Table 1: Time (in secs) for writing out a distributed array

every time the file is extended. This is particularly an issue with the versions. SEQO.
SEQ! and SEQ2 since each individual write for a part of the column extends the file.

It is clear from our experiments. that at least on the iPSC/860. that the version
NEW performs better than the rest of the implementations. This indicates that 1/0
bound applications running on distributed memory machine may achieve much better
performance if the user can provide information which would help the compiler and
runtime system to choose the best possible sequence of the data elements written out to
secondary storage.

The concurreut [/O operations described in the last section are currently being inte-
grated into the Vienna Fortran Compilation System. We will report on the performance

of these operations. in the context of actnal applications. at a later date.

5 Conclusions

Vendors of massively parallel svstems usnally provide high-capacity parallel 170 subsys-
tems. Efficient usage of such subsystems is eritical to the performance of 1/0 bound
application codes. In this paper. we have presented language constructs to express par-
allel 1/0 operations on distributed data structures. These operations can be used by
the programmer to provide information which will allow the compiler and runtime envi-
ronment to optimize the transfer of data to and from secondary storage. The language
constructs presented here have been proposed in the context of Vienna Fortran. however.

they can be easily integrated into any other high performance FORTRAN extension,

Acknowledgment

We would like to thank Barbara Chapman for her helpful comments and discussions. We

would also like to thank one of the referees for the insightful and detailed comments.

References

[

(2]

(]
[10]

(1]

(12]

J.C. Admiraal and (', Pronk : Distributed Store Allocation and File Management,
Microprocessors and Microsystems, Vol. 14, No 1, 10-16, January/February 1990

R.K. Asbury, D.S. Scott: FORTRAN 1/0 on the iPSC/2: Is There Read After
Write? | Proceedings of the DMCC 4, 129-132, 1989

P. Beadle: A Distributed File System for K2, Technical Report No. 83/17, ETH

Zirich

S. Benkner, B. Chapman, H. Zima: Vienna Fortran 90, Proceedings of "Scalable

High Performance Computing Conference”, April 26-29, Wilhamsburg, 1992

B. M. Chapman, P. Mehrotra, H. Zima: Programming in Vienna Fortran, Scientific

Programming, Vol.1, No.l, 1992.

G. Fox, S. Hiranandani, K. Kennedy, C'. Koelbel, U. Kremer, C. Tseng, and M. Wu:
Fortran D language specification, Department of Computer Science Rice COMP
TR90079, Rice University, March 1991

H.M. Gerndt: Automatic Parallelization for Distributed-Memory Multiprocessing
Systems, Ph.D. Dissertation, University of Bonn, Austrian Center for Parallel Com-
putation Technical Report Series ACPC/TR90-1, 1989

High Performance FORTRAN Forum, High Performance FORTRAN Language
Specification. Technical Report, Rice University, Houston, TX.

IPSC/2 and iPSC/860 Manuals, Intel, 1990
A.H. Karp: Programming for Parallelism. Computer 20(5), 43-57, May 1987

(. Koelhel and P. Mehrotra: Compiling global name-space parallel loops for dis-
tributed cxecution, IEEE Transactions on Parallel and Distributed Systems, October
1991

P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures
using Kali. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances
in Languages and Compilers for Parallel Processing, pages 364-384. Pitman/MIT-
Press, 1991,

14

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

J. H. Merlin: ADAPTing FORTRAN 90 Array Programs for Distributed Mem-
ory Architectures, Proceedings of the First International Conference of the ACPC,
September 1991, Salzburg, Austria

D.M. Pase: MPP FORTRAN Programming Model, Draft 1.0, Technical Report.
Cray Research, October 1991

P. Pierce: A4 Concurrent File System for a Highly Parallel Mass Storage Subsystem,
Proceedings of the DMCC 4, 155-160, 1989

T.W. Pratt, J.C. French, P.M. Dickens, S.A. Janet, Jr. : A Comparison of the
Architecture and Performance of Two Parallel File Systems, Proceedings of the
DMCC 4, 161-166, 1989

R.D. Tennent: Principles of Programming Languages, Prentice Hall, New Jersey,
1981

P. S. Tseng: A systolic array programming language, Proceedings of the DMCC 5,
1125-1130, 1990

H. Zima, H.-J. Bast, and H. M. Gerndt: SUPERB - a tool for semi-automatic
MIMD/SIMD parallelization, Parallel Computing, 6, 1-18, 1988

H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald: Vienna Fortran
- a language specification, ACPC Technical Report Series, University of Vienna,
Vienna, Austria, 1992. Also available as [CASE INTERIM REPORT 21, MS 132c,
NASA, Hampton VA 23681.

REPORT DOCUMENTATION PAGE Form Approved

OM8B No 0704-0188

TN enTTA TE m et m gt et pRanate T 0 0P TSDUTSE R (DinG TR T me YT reyew A ARTrLCLONS SEAT Rm T ex 41 A 3313 sOul Ay
TITRe 3313 PeAgRQ 4T L TR tim [gng R S ST PO Tt emal oA Seng I mmenty rn?a'a"‘; TF A Durden eyt Mate ot any TRher aspect ot thy
e L@ R sug st Tyt < TraCden T Tt c mpadQudrtery har ey Dirartorate T atemation Operations ang Reporty 1215 etteryon
COTH e mgtTe LS LIS A0, e e e TR g aeent am 3 M L0080 Paper s Meguthin Proest 1 02048-0088) Aash ngton L D503
1. AGENCY USE ONLY (Leave Dlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Septembher 1942 Cantractor Renort
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS
CONCURRENT FILE OPERATIONS IN A HIGH PERFORMANCE C NAS1-18605
FORTRAN C NAS1-19480

6. AUTHOR(S) WU 505-90~52-01
Peter Brezany, Michael Gerndt, Piyush Mehrotra, :
and Hans Zima

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER
and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

ICASE Report No. 92-46

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Langley Research Center : NASA CR-189711
Hampton, VA 23681-0001 ICASE Report No. 92-46

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card To appear in Supercomputing '92
Final Report (November 1992)
123 DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maxsmum 200 words)

Distributed memory multiprocessor systems can provide the computing power necessary
for large-scale scientific applications. A critical performance issue for a number
of these applications is the efficient transfer of data to secondary storage.
Recently several research groups have proposed FORTRAN language extensions for ex-
ploiting the data parallelism of such scientific codes on distributed memory archi-
tectures. However, few of these high performance FORTRANs provide appropriate con-
structs for controlling the use of the parallel 1/0 capabilities of modern multi-
processing machines. In this paper, we propose constructs to specify I/0 operatioms
for distributed data structures in the context of Vienna Fortran. These operations
can be used by the programmer to provide information which can help the compiler and
runtime environment make the most efficient use of the I/0 subsystem.

14. SUBJECT TERMS 15. NUMBER OF PAGES
distributed-memory multiprocessors; concurrent input/output; 17
data distribution; Fortran language extensions 16. PRICE CODE
AQ3
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-0-280-5500 Standacd Form 198 ‘Rev 189

By pea By st w3 CAuwe

NASA T e Ll

